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Parastou Eslami, PhD, Ali Sadeghi, PhD, Simon Wehle, PhD, David Prabhu, PhD, Irina Waechter-Stehle, PhD,
Ashish M. Chaudhari, PhD, Teodora Szasz, PhD, Linda Lee, MD, Marie Altenburg, MD, Giancarlo Saldana, MD,

Michael Randazzo, MD, Jeanne M. DeCara, MD, Karima Addetia, MD, Victor Mor-Avi, PhD,
and Roberto M. Lang, MD, Chicago, Illinois; and Cambridge, Massachusetts

Background: Although regional wall motion abnormality (RWMA) detection is foundational to transthoracic
echocardiography, current methods are prone to interobserver variability. We aimed to develop a deep
learning (DL) model for RWMA assessment and compare it to expert and novice readers.
Methods: We used 15,746 transthoracic echocardiography studies—including 25,529 apical videos—which
were split into training, validation, and test datasets. A convolutional neural network was trained and validated
using apical 2-, 3-, and 4-chamber videos to predict the presence of RWMA in 7 regions defined by coronary
perfusion territories, using the ground truth derived from clinical transthoracic echocardiography reports.
Within the test cohort, DLmodel accuracywas compared to 6 expert and 3 novice readers using F1 score eval-
uation, with the ground truth of RWMAdefined by expert readers. Significance between theDLmodel and nov-
ices was assessed using the permutation test.
Results: Within the test cohort, the DL model accurately identified any RWMA with an area under the curve of
0.96 (0.92-0.98). The mean F1 scores of the experts and the DL model were numerically similar for 6 of 7 re-
gions: anterior (86 vs 84), anterolateral (80 vs 74), inferolateral (83 vs 87), inferoseptal (86 vs 86), apical (88 vs
87), inferior (79 vs 81), and any RWMA (90 vs 94), respectively, while in the anteroseptal region, the F1 score of
the DLmodel was lower than the experts (75 vs 89). Using F1 scores, the DLmodel outperformed both novices
1 (P = .002) and 2 (P = .02) for the detection of any RWMA.
Conclusions: Deep learning provides accurate detection of RWMA,whichwas comparable to experts and out-
performed amajority of novices. Deep learningmay improve the efficiency of RWMA assessment and serve as
a teaching tool for novices. (J Am Soc Echocardiogr 2024;37:655-63.)
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2D = Two-dimensional

AHA = American Heart

Association

AI = Artificial intelligence
INTRODUCTION

Theassessment of regionalwallmotion abnormalities (RWMAs) is para-
mount for the echocardiographic evaluation of ischemic heart disease.
Accurate identification of RWMAs is key to the identification of acute
and chronic myocardial infarction, as well as the differentiation of
ischemic from nonischemic causes of cardiomyopathy. Currently, the
ASE = American Society of

Echocardiography

DICOM = Digital Imaging and

Communications in Medicine

DL = Deep learning

ROC = Receiver operator

curve

RWMA = Regional wall
motion abnormality
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assessment of RWMA relies on
qualitative interpretation of the
multiple echocardiographic views.
However, conceptually this is one
of the most difficult skills to learn
in echocardiography. Additionally,
even for readers who attain exper-
tise, visual RWMA assessment re-
mains prone to interobserver
variability.1,2 For example, in a prior
study by Hoffman et al.,1 the inter-
observer agreement for the detec-
tion of RWMA using noncontrast
two-dimensional (2D) echocardi-
ography was only 37%. Moreover,
muchof the available evidence sup-
porting qualitative methods for
RWMA detection is derived from
655
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Central Illustration Illustration of key findings of the study. The AImodel was trained and validated using apical 2-, 3-, and 4-chamber
images to predict the ground truth of RWMA from the clinical echocardiography report. The model was subsequently tested using a
reader study format. Here, the AI model demonstrated comparable accuracy to the ground truth of expert readers and outperformed
a majority of novice readers for RWMA detection.
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expert readers at academic medical centers.3,4 The accuracy of RWMA
assessmentappears tobe evenworse innovice readers.5,6 There is there-
fore room for improvement in the current paradigm for RWMA assess-
ment.

One potential method by which to augment reader assessment of
RWMA is through artificial intelligence (AI), which has shown the poten-
tial to improve the automation and diagnostic accuracy of several tasks in
echocardiography. Deep learning (DL) is anAImethod inwhichmodels
are trained directly on echocardiographic images using neural networks
to detect a finding or condition.7 The factual data used for training are
commonly referred to as the ground truth, which is used to train the
AImodel, such that its detection comes as close as possible to the ground
truth. The power of AI in echocardiography has been demonstrated in a
variety of disease states, including hypertrophic cardiomyopathy, cardiac
amyloidosis, and valvular heart disease.8-10 Previous studies have also
shown promising capabilities for AI to detect RWMAs.11,12 However,



HIGHLIGHTS

� Currently, assessment of regional wall motion is prone to inter-

observer variability.

� We developed a DL model for regional wall motion assess-

ment.

� The model demonstrated excellent accuracy, equivalent to

that of expert readers.

� The model outperformed the majority of the novice readers.

� It may prove useful, as it rapidly highlights areas of concern.
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further studies are needed to prospectively validate AI-based RWMA
assessment using current American Society of Echocardiography (ASE)
wall segmentation.13 Additionally, it is unknown which types of readers
(i.e., experts and/or novices) are likely to derive themost benefit fromAI-
assisted RWMA assessment.

The aim of this study was to utilize a large database of 2D echocar-
diograms to (1) train and validate a novel AI model to detect RWMAs
in accordance with ASE segmentation guidelines and (2) compare its
accuracy to that of both expert and novice readers.
METHODS

Training, Validation, and Test Cohort Selection and Image
Analysis

We identified 15,746 consecutive transthoracic echocardiograms—
composed of 25,529 apical 2-, 3-, and 4-chamber Digital Imaging and
Communications in Medicine (DICOM) videos—performed at the
University of Chicago between 2007 and 2020. The dataset was
composed of all patients imaged within this time period who
possessed adequate-quality 2-, 3-, and/or 4-chamber videos,
including those with RWMAs due to both ischemic and nonischemic
Figure 1 Definitions of each of the 7 ASE regions th
causes, as well as patients without RWMA. These studies were
randomly assigned to model training (n = 14,072) and validation
(n = 1,563) cohorts with no patient overlap between groups. The
training and validation cohorts were utilized for model development
and fine-tuning using the presence of RWMAs from the clinical trans-
thoracic echocardiography report as the ground truth. A separate test
dataset containing 111 studies—including 40 normal and 71 with
RWMA—was used to perform the reader study to compare the per-
formance of the AI model to both experts and novice readers, using
the consensus determination of the presence of RWMAs from the
expert readers as the ground truth. In order to adequately assess
the model across all regions, the test cohort was designed to include
a similar proportion of RWMAs in each region. All of the readers who
formulated the clinical echocardiography reports were level III
readers, a majority of whom had >10 years of reading experience.
This study was approved by the Institutional Review Board with a
waiver of informed consent.
All studies were performed using Philips ultrasound imaging equip-

ment using standard acquisition techniques. For each study, regional
wall motion was assessed by an expert reader in accordance with ASE
guidelines and standards. We divided the myocardium into 7 regions
defined based on the American Heart Association (AHA) 17-segment
model, while also conforming to the boundaries of the coronary ter-
ritories outlined in the ASE guidelines: anteroseptal, anterior, antero-
lateral, inferolateral, inferior, inferoseptal, and apical (Figure 1).13

Coding of an RWMA in any AHA segment within this region was
considered positive, irrespective of the number of AHA segments
involved. For the purposes of this study, those with global hypokinesis
were considered to have an RWMA only if there were regional differ-
ences in wall motion. The overall methodology for model training,
validation, and testing is depicted in the Central Illustration.

Artificial Intelligence Model Training and Validation

After accounting for the 111 studies that were utilized for the test
dataset, the remaining 15,635 studies were randomly assigned
at were used for model training and validation.



Figure 2 (A) Flowsheet depicting the workflow for training the AI model; apical images were input into the 10-layer convolutional neu-
ral network to predict the ground truth of RWMAs derived from the clinical echocardiogram reports. (B)Model testing was performed
via a reader study in which the accuracy of the AI model was compared to expert and novice readers. Artificial intelligence and novice
accuracy were assessed using a ground truth of RWMA derived from a majority of the 6 experts. Experts were assessed using a
rotating panel of other experts such that an expert was not included in their own ground truth.
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90%/10% into model training and validation sets. Apical 2-, 3-, and
4-chamber non-contrast-enhanced videos were manually annotated
from the complete echocardiographic examination. Using these
videos as input, we developed a three-dimensional convolutional
neural network to predict the ground truth of presence of
RWMAs (Figure 2A). For model training and validation, the ground
truth for RWMAs was defined from the clinical echocardiography
report.
The convolutional neural network works by analyzing imaging

features derived from raw echocardiographic videos—in this case
apical 2-, 3-, and 4-chamber views—in order to predict the presence
and location of RWMAs as defined from the clinical reports. More
specifically, the network processes ultrasound image sequences by
convolving both over the space and time dimension of the input.
The model itself used the full scan-converted B-mode images,
without annotations. No spatial cropping was used. The clips were
split by cardiac cycle, using the electrocardiogram, that is, only using
complete cardiac cycles. The images were resampled to a matrix size
of 120�120 using B-spline interpolation. The temporal axis was not
resampled. We did consider multiple cycles per view, if available.
The model processes each cardiac cycle from each view indepen-
dently. The available predictive values from each view and each cy-
cle are then averaged to generate an aggregate predicted probability
for RWMAs. We trained 1 model for each of the 7 wall sectors.13 In
the case of the left ventricular apex, the probabilities from all avail-
able apical 2-, 3-, and 4-chamber cardiac cycles were aggregated.
The model is an end-to-end DL model that directly learns from
the images, that is, there is no special treatment for a specific region
like the apex.
The AI model was trained in a supervised manner, where the

ground truth of RWMAs was obtained from finding codes extracted
from structured reports by expert readers that were created during



Table 1 Characteristics of the training, validation, and test
cohorts

Parameter

Training and

validation cohort

(n = 15,635 patients,

n = 25,529 DICOM)

Test cohort

(n = 111 studies)

Clinical data

Age, years, mean

(IQR)

70.7 (60-83) 77.4 (69-90)

Gender, male, % 48 51
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routine exams. A standard cross-entropy loss function and the Adam
optimization algorithm were used for model training.
Hyperparameters such as confidence threshold, learning rate, and
model size were selected using the validation set. To reduce overfit-
ting and improve generalization, we used data augmentation tech-
niques such as random brightness, contrast, and shifting
augmentation. The output of the convolutional neural network is a
per-region confidence of RWMA detection between 0 and 1. We
set a threshold confidence level of 0.4 to define the presence or
absence of RWMAs based on the validation set receiver operator
curve (ROC) performance with the goal of having a balanced
trade-off between true- and false-positive prediction rates.
Race, %

White 51 53

Black 31 27

Other 18 20

Height, cm, mean

(IQR)

170 (163-178) 170 (163-178)

Weight, kg, mean
(IQR)

79 (67-93) 81 (69-97)

Systolic blood

pressure, mm Hg

130 6 23 126 6 25

Diastolic blood

pressure, mm Hg

72 6 15 68 6 12

Echocardiographic

data, cm

IVSd 1.01 1.04

PWd 1.00 1.04

LVIDd 5.06 5.04

EF (Biplane method

of disks), %

52.22 39.6

Wall motion
abnormality, n (%)

Inferior 5,705 (22) 48 (43)

Inferolateral 4,681 (18) 46 (41)

Anterolateral 3,352 (13) 43 (39)

Anterior 4,495 (18) 46 (41)

Anteroseptal 2,508 (10) 34 (31)

Inferoseptal 4,221 (17) 42 (38)

Apical 5,745 (23) 52 (47)

Any RWMA 10,722 (42) 66 (59)

A subset of measurements is available for the test cohort. EF, Left

ventricular ejection fraction; IQR, interquartile range; IVSd, interven-

tricular septal thickness; LVIDd, left ventricular end-diastolic diam-
eter; PWd, posterior wall thickness.
Comparison of AI Model With Expert and Novice Readers

Using the distinct 111 patient test dataset, we performed a reader
study to assess the accuracy of the AImodel in comparison to 6 expert
and 3 novice readers. Expert readers were defined as board-certified
echocardiographers with level III competency in echocardiography.14

Novice readers were defined as fellows with $3 months dedicated
training in echocardiography who had not yet passed their echocardi-
ography board examinations. Although only apical views were used
by the AI model, experts and nonexpert readers were provided
with all standard views, including parasternal and contrast-
enhanced images when available. For the reader study, expert and
nonexpert readers were blinded to the prediction of the AI model.
The definitions of the ground truth for each group for the reader

study are depicted in Figure 2B. The AI model and novice perfor-
mance were assessed using the ground truth for RWMAs formed
by a 6-way majority vote of all experts, that is, at least 4 of the 6 ex-
perts. Experts’ performance was assessed using a ground truth for
RWMAs comprising a rotating majority vote of at least 3 of the re-
maining 5 experts, such that the expert being evaluated was never
part of the ground truth that they were evaluated against. The perfor-
mance of the AI model, expert, and novice readers were compared in
the test dataset using F1 scores, defined as harmonic mean of preci-
sion and recall, as well as ROC analysis. The F1 score is a commonly
used metric for evaluating the performance of DL models, balancing
the model’s ability to detect RWMAs and minimizing the misclassifi-
cation of an RWMA when it is not present.15 A ROC analysis was
used to determine the optimal threshold for detecting RWMAs, while
balancing sensitivity and specificity, and to evaluate the overall diag-
nostic accuracy of the DL model in the different regions.
We tested for significance of the differences in the F1 scores

between the DL algorithm and novices using the permutation test.
P values < .05 were considered significant. A permutation test is a sta-
tistical procedure that helps assess whether an observed difference or
relationship between groups in a dataset is likely a real effect or if it
could have happened due to random chance.16 Statistical analysis
and metric calculation were performed using the Python packages
scipy and scikit-learn. The convolutional neural networks were
trained with PyTorch.
RESULTS

Model Training and Validation

Clinical and echocardiographic characteristics for the training and
validation cohorts are listed in Table 1. Within the 25,529 training
and validation images, abnormal regional wall motion was noted
within the structured echocardiography reports in 10,722 (42%) of
cases, with apical abnormalities being the most common. The preva-
lence of abnormal wall motion in the inferior, anterolateral, inferolat-
eral, inferoseptal, anterior, anteroseptal, and apical regions was 22%,
13%, 18%, 17%, 18%, 9%, and 23%, respectively.

Comparison of AI Model With Expert and Novice Readers

Clinical and echocardiographic characteristics for test cohort are also
listed in Table 1. In the test cohort, an RWMA was present in 66
studies (59% of cases). The prevalence of inferior, anterolateral, in-
ferolateral, inferoseptal, anterior, anteroseptal, and apical wall motion
abnormalities was 43%, 39%, 42%, 38%, 42%, 31%, and 47%,
respectively. The area under the curve of the AI model for detection
of any RWMA in the test cohort was 0.96 (0.92-0.98).



Table 2 Comparison of F1, recall, and accuracy between AI model and the expert readers

Wall sector

F1 score Recall Accuracy

AI model Experts AI model Experts AI model Experts

Anterior 84 (76, 91) 86 (79-93) 88 (80, 96) 84 (76-93) 85 (78, 92) 88 (82-93)

Anterolateral 74 (66, 84) 80 (72-87) 78 (68, 91) 78 (67-86) 78 (70, 85) 82 (75-88)

Inferolateral 87 (80, 92) 83 (75-90) 88 (81, 95) 82 (73-90) 87 (82, 92) 85 (78-90)

Inferoseptal 86 (80, 92) 86 (78-92) 86 (77, 94) 86 (76-94) 88 (82, 93) 85 (81-93)

Anteroseptal 75 (64, 83) 89 (83-95) 66 (52, 78) 89 (81-96) 81 (72, 87) 90 (84-95)

Apical 87 (80, 94) 88 (81-94) 98 (93, 100) 88 (81-94) 87 (81, 94) 89 (84-94)

Inferior 81 (72, 88) 79 (70-87) 91 (82, 98) 79 (67-89) 82 (75, 87) 81 (74-89)

Any Wall 94 (90, 96) 90 (84-94) 92 (86, 97) 92 (87-97) 92 (87, 96) 87 (81-93)

Values are stated as median and 95% CI.
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The F1 scores of the AI model and the average of the 6 experts
within the test dataset are displayed in Table 2. The mean F1 scores
of the experts and the DL model were similar for 6 of 7 regions: ante-
rior (86 vs 84), anterolateral (80 vs 74), inferolateral (83 vs 87), infer-
oseptal (86 vs 86), apical (88 vs 87), inferior (79 vs 81), and any
RWMA (90 vs 94), respectively, while in the anteroseptal region
the F1 score of the DL model was lower than the experts (75 vs
89). Similarly, the F1 score (94 vs 90), recall (92 vs 92), and accuracy
(92 vs 87) were similar for the DL model versus the experts, respec-
tively, for any RWMA. Receiver operator curve analysis demon-
strated similar performance for the AI model and the 6 expert
readers for detection of any RWMA, while individual differences
were observed in specific myocardial areas, being most pronounced
in the anterolateral and anteroseptal regions (Figure 3).
Figure 3 Receiver operator curve analysis depicting accuracy of th
accuracies represented by the 6 color dots are compared against t
The F1 scores of theAImodel and the 3 novice readers are shown in
Table 3. As compared with the AI model, both novices 1 and 2 per-
formed significantly worse for the detection of any RWMA, as
compared to the AI model (P = .002 and .02, respectively). The AI
model performed significantly better than novice 2 for the detection
of apical wall motion abnormalities (P = .006). Additionally, the AI
model outperformed novice 2 for the detection of RWMAs in the in-
ferolateral, inferoseptal, and inferior regions (P = .03, .02, and .05,
respectively). There were no significant differences in F1 scores be-
tween novice 3 and the AI model. With respect to recall scores, the
DL model performed significantly worse than novice 1 and novice 3
in the anteroseptal region. The ROC analysis showed similar or better
performance of the AI model compared with all 3 novice readers with
the exception of the anterolateral and anteroseptal region (Figure 4).
e AI model within the test cohort on a per-region basis. Expert
he AI model represented by the ROC curves.



Table 3 Comparison of F1 scores, recall, and accuracy between the AI model and novice readers

Wall sector

F1 score comparison

AI model Novice 1 Novice 2 Novice 3

Anterior 84 (76, 91) 86 (79, 93) 76 (65, 85) 80 (70, 88)

Anterolateral 74 (66, 84) 74 (64, 82) 69 (59, 78) 83 (75, 90)

Inferolateral 87 (80, 92) 81 (74, 88) 76 (67, 84)* 86 (78, 91)

Inferoseptal 86 (80, 92) 83 (75, 88) 74 (65, 81)* 87 (80, 93)

Anteroseptal 75 (64, 83) 83 (73, 89) 77 (70, 86) 83 (74, 90)

Apical 87 (80, 94) 75 (66, 84)* 80 (73, 87) 87 (80, 93)

Inferior 81 (72, 88) 75 (65, 83) 71 (62, 80)* 86 (80, 91)

Any wall 94 (90, 96) 85 (80, 91)* 88 (82, 92)* 88 (82, 93)

Recall score comparison

Anterior 88 (80, 96) 90 (82, 98) 70 (59, 82)* 79 (64, 88)

Anterolateral 78 (68, 91) 85 (77, 94) 74 (60, 84) 85 (77, 94)

Inferolateral 88 (81, 95) 84 (74, 93) 74 (63, 84) 86 (77, 94)

Inferoseptal 86 (77, 94) 96 (91, 100) 84 (74, 94) 90 (80, 97)

Anteroseptal 66 (52, 78) 96 (90, 100)* 85 (75, 93) 90 (82, 98)*

Apical 98 (93, 100) 96 (89, 100) 89 (78, 97) 96 (91, 100)

Inferior 91 (82, 98) 83 (73, 92) 83 (71, 92) 88 (78, 96)

Any wall 92 (86, 97) 95 (91, 99) 96 (92, 100) 87 (81, 94)

Accuracy comparison

Anterior 85 (78, 92) 87 (81, 93) 81 (73, 87) 82 (75, 88)

Anterolateral 78 (70, 85) 76 (68, 83) 72 (66, 80)* 86 (78, 92)

Inferolateral 87 (82, 92) 82 (75, 88) 78 (72, 86) 86 (80, 92)

Inferoseptal 88 (82, 93) 82 (75, 88) 73 (66, 80)* 88 (82, 94)

Anteroseptal 81 (72, 87) 82 (74, 89) 78 (71, 86) 84 (76, 91)

Apical 87 (81, 94) 73 (65, 82)* 80 (72, 86) 87 (81, 93)

Inferior 82 (75, 87) 76 (68, 85) 72 (64, 80) 88 (82, 93)

Any wall 92 (87, 96) 78 (70, 85)* 82 (75, 87)* 84 (77, 90)

Values are stated as median and 95% CI.

*P < .05 between AI model and novice.
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DISCUSSION

In our study, we developed a novel AImodel aimed to detect RWMAs,
which was subsequently validated by comparing its accuracy to that of
both expert and novice readers. This model demonstrated excellent ac-
curacy, which was equivalent to that of experts and outperformed a
majority of the novice readers (Central Illustration).

In our study, the AI model demonstrated comparably high accu-
racy in the test dataset, supporting the generalizability of our results.
Although the model was reasonably accurate on a regional basis, it
was most accurate for the detection of any RWMA. Because echocar-
diography is the frontline assessment tool in patients with known or
suspected ischemic heart disease, the detection of any RWMA is
therefore likely to be most clinically relevant, as this identifies patients
who may warrant further diagnostic evaluation. The model per-
formed best for detection of anterior and apical RWMA.
Conversely, the model performed worst for the detection of
RWMAs in the anterolateral and anteroseptal regions. One potential
explanation for this is that these latter regions aremore prone to endo-
cardial dropout—particularly on non-contrast-enhanced images.17

This may have disproportionately affected the accuracy of the AI
model relative to the readers who had access to contrast-enhanced
images. Further studies are needed to assess whether the inclusion
of parasternal views and/or contrast-enhanced views—which may
provide improved segmental visualization—can further improve the
accuracy of DL for RWMA assessment.

Among AI techniques, DL is uniquely suited to visual tasks, such as
RWMA assessment, due to its ability to rapidly analyze large amounts
of spatial and temporal imaging data, automatically selecting impor-
tant features without the need for manual selection or quantifica-
tion.18,19 One potential drawback of our model was the need for
manual annotation of views for the convolutional neural network,
which may slightly increase performance time. The integration of ex-
isting technologies for automated view identification will likely further
improve model efficiency in the future.20,21

Our study expands on a growing body of literature supporting the
accuracy of AI for the echocardiographic detection of RWMAs.
Previously, Huang et al.11 had developed an AI model that demon-
strated a high degree of accuracy for the detection of RWMAs in
both internal and external validation. Similarly, using a smaller
300 patient cohort, Kusunose et al.12 developed an AI model based
on coronary distributions, which demonstrated comparable accu-
racy to that of echocardiographers. One advantage of our study
was the division of wall segments into 7 myocardial regions, which
conformed to the boundaries of the coronary perfusion territories as
defined in the current ASE guidelines.13 This is important as the



Figure 4 Receiver operator curve analysis depicting accuracy of the AI model within the test cohort on a per-region basis. Novice
accuracies represented by the 3 color dots are compared against the AI model represented by the ROC curves.
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compliance of the model with current reporting standards helps to
ensure that the AI output is easily interpretable and clinically action-
able. Further studies are needed to assess whether expansion of
DL-based RWMA assessment to a 17-segment model provides in-
cremental value.

In addition to demonstrating high accuracy of the detection of
RWMAs in the test cohort, the AI model provided comparable accu-
racy to that of expert readers. Our findings parallel those of
Kusonose et al.12 An advantage of AImethods over conventional visual
analysis is that they can be performed in seconds, providing rapid and
accurate information. Artificial intelligence–based RWMA assessment
therefore has the potential to augment expert reads by rapidly high-
lighting areas of concern for RWMAs, improving the ease and effi-
ciency of interpretation. Artificial intelligence assistance may be
particularly helpful as a user support tool given the rising utilization
of transthoracic echocardiography, which may increase workload,
potentially at the risk of accuracy.22,23 Another potential benefit of
AI for RWMA assessment is in improving the consistency of echocar-
diography reporting. As in prior studies, we observed substantial inter-
observer variability with respect to RWMA detection, even among
expert readers,1,2 as reflected by the data reported in Figure 3.
Further studies are needed to determine whether the integration of
the AI methodology into clinical interpretation can reduce interob-
server variability with respect to RWMA assessment.

Lastly, our AI model outperformed amajority of novice readers for
RWMA assessment. In their study, Kusunose et al. compared the per-
formance of their AI model to resident physicians. Our study differs in
that we utilized novice echocardiographers who—unlike resident phy-
sicians—have received formal training in echocardiography. Our study
suggests the potential for AI to augment the accuracy of novices for
RWMA detection even with such training. Given this, it is perhaps
possible that AI could potentially allow for distribution of expert-
level RWMA analysis to geographic regions where such expertise is
not otherwise available. Artificial intelligence models could also serve
as an educational tool to improve novices’ ability to assess regional
wall motion. It should be noted that we did not assess whether the
use of AI augmented novice performance; further studies may help
to better elucidate whether access to AI model predictions would pro-
vide direct benefit to novice readers.
Limitations

One limitation of our study is that we used images obtained from a sin-
gle ultrasound vendor. However, as the model uses DICOM images as
input, it is unlikely that these results would not be generalizable to other
vendors. Extended follow-up studies should aim to validate our find-
ings using multicenter, multivendor data. Additionally, although no im-
ages were excluded, some studies were partially incomplete and did
not contain all 3 apical views, resulting in a discordance between the
15,746 echo studies and 25,529 images included; however, we chose
not to exclude these studies in order tomaximize the size of our dataset
for model development. Additionally, rather than randomly select pa-
tients for the test dataset, we chose to include a similar number of
RWMAs from each myocardial region in the test dataset.
Accordingly, age, left ventricular ejection fraction, and prevalence of
RWMA differed between the training/validation and test datasets.
We felt this was important because random sampling would be likely
to overrepresent more common RWMAs, such as apical and inferior
territories, thus skewing the performance of the model in the reader
study. Additionally, using a testing pool with many healthy patients—
which are easy to classify—could have also shifted the results in favor
of the model.
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We only assessed readers within a single tertiary academic echocar-
diography laboratory. Further studies are needed to determine
whether AI could augment RWMA assessment at centers where
such a high level of expertise is not available. Another potential limi-
tation of this study is the use of expert wall motion interpretation on
resting 2D echocardiogram as the ground truth rather than invasive
coronary angiography or noninvasive stress testing. One reason for
this choice was that RWMAmay be caused by a variety of conditions,
including ischemia, infarction, and even nonischemic etiologies, such
as cardiac sarcoidoisis or takotsubo cardiomyopathy. Even high-grade
stenosis without myocardial infarction may not manifest in RWMAs
under resting conditions; similarly, occult prior myocardial infarction
may manifest in an RWMA in the absence of epicardial stenosis.24

Further studies may be useful to determine whether AI is similarly
effective at detecting stress-induced RWMA.

Moreover, the use of the clinical reports for the classification of
RWMAs during training and validation may have affected the devel-
opment of the DL model. Presumably readers generating those re-
ports would have access to clinical data that might influence the
interpretation of the exam, as readers may be more likely to assign
an RWMA when they have knowledge of a history of coronary dis-
ease or prior infarction. Our model also did not utilize parasternal
or contrast-enhanced images. However, this is likely only to the disad-
vantage of the model, as readers were provided with all views
including parasternal and contrast-enhanced images when present.
Further studies are needed to determine whether the inclusion of par-
asternal and/or contrast-enhanced images can further improve the
DL-based assessment of RWMA.

Lastly, the use of DL for RWMA assessment does represent a
‘‘black box.’’ Because the neural network works by processing raw im-
ages, we are unable to determine which aspects of the images are
most important for RWMA assessment.
CONCLUSION

This study indicates that the use of this new AI algorithm provides
highly accurate detection of RWMAs. The automated DL-based
assessment of RWMAs has the potential to improve the efficiency
of all readers and may serve as a teaching tool for novice readers.
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